Page 1 Wednesday, October 31, 2018 3:59 PM Note: These lecture notes are accompanied with video animations in a separate pdf file Conservative Systems Consider $S\begin{cases} x^2 = f(x,y) \\ y = g(x,y) \end{cases}$ -20 dynamical system. What is a trajectory? Think of a brajectory as the path of a ball with coordinates (x(t), y(t)) as time $t \uparrow$, where $x(t)$ and $y(t)$ are solutions to β . So, for different initial conditions, you get different trajectories for the same dynamical system. In 2D, it is easy to visualize trajachies using motlab. e.g.1: Consider $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ ergenvaluo : $\lambda = -\frac{1}{4} \mp i \frac{\sqrt{5}}{4}$ -> stable spiral. simulations for 3 Trajectories Initial Condition $(1,1)$ different initial conditions $-x(t)$ \sum_{∞} 0.5 $\widehat{\widetilde{E}}_{0.5}^0$ 15 Figure 1 shows an Initial Condition $(2,2)$ animation that illustrate $-x(t)$ $\begin{array}{c}\n\begin{array}{c}\n\text{(i)} \\
\text{(ii)} \\
\text{(iii)} \\
\text{(iv)} \\
\text{(v)} \\
\text{(v)}\n\end{array} \\
\end{array}$ $-y(t)$ $\geqslant 0$ the evolution of a trajectory 10 15 -1 20 in phase plane and in time Initial Condition (3,3) -2 $\cdot x(t)$ $\mathop{\gtrless}\limits_{\mathbb{B}}2$ $y(t)$ $x(t), y$ o -3 -4 -4 $\,$ 5 $10\,$ 15 20 -9 $\ddot{0}$

Page 2
\nWe
\n
$$
\frac{\text{What is a closed Trajectory?}}{\text{TragCorry that } \text{fchra} \text{ then } \text{fchra} \text{ is a fixed.}
$$
\n
$$
C_3. \text{For } \text{Bmax} \text{ to } \text{Byskm} \text{ is } C_2 \text{ln} \text{tr } c
$$
\n
$$
C_4. \text{For } \text{Bmax} \text{ to } \text{Byskm} \text{ is } C_2 \text{ln} \text{tr } c
$$
\n
$$
C_3. \text{For } \text{Bmax} \text{ to } \text{Byskm} \text{ is } C_2 \text{ln} \text{tr } c
$$
\n
$$
C_4. \text{For } \text{Bmax} \text{ to } \text{Byskm} \text{ is } C_2 \text{ln} \text{tr } c
$$
\n
$$
C_3. \text{For } \text{Bmax} \text{ to } \text{Byskm} \text{ is } C_3 \text{ln} \text{tr } c
$$
\n
$$
C_4. \text{For } \text{Amax} \text{ is } C_4 \text{ln} \text{tr } c
$$
\n
$$
C_5. \text{For } \text{Bmax} \text{ to } \text{Byskm} \text{ is } C_6 \text{ln} \text{tr } c
$$
\n
$$
C_6. \text{For } \text{Bmax} \text{ is } C_6 \text{ln} \text{tr } c
$$
\n
$$
C_7. \text{For } \text{Bmax} \text{ is } C_7 \text{ln} \text{tr } c
$$
\n
$$
C_8. \text{For } \text{Bmax} \text{ is } C_7 \text{ln} \text{tr } c
$$
\n
$$
C_8. \text{For } \text{Bmax} \text{ is } C_7 \text{ln} \text{tr } c
$$
\n
$$
C_8. \text{For } \text{Bmax} \text{ is } C_7 \text{ln} \text{tr } c
$$
\n
$$
C_8. \text{For } \text{Bmax} \text{ is } C_7 \text{ln} \text{tr } c
$$
\n
$$
C_8. \text{For } \text{Bmax} \text{ is } C_7 \text{ln} \text{tr } c
$$
\n
$$
C_9
$$

Page 3
\nWedeneday, October 31, 2018 3:39 PM
\nSo, of:
$$
[\frac{1}{3}] = [-\frac{1}{3}][\frac{1}{3}]
$$
 is a conserved quantity.
\nBut what does E(xy) mean physically?
\nBut what does E(xy) mean physically?
\n $\frac{1}{3}$
\n $\frac{1}{3}$

Page 5 Wednesday, October 31, 2018 3:59 PM Theorem (Nonlinear Centers for Conserved Systems) Consider $\begin{cases} \dot{x} = f(x,y) \\ \dot{y} = g(x,y) \end{cases}$ where f and g are smooth functions. Suppose that: (1) We know a conserved quantity $E(x,y)$ (2) (x^*y^*) is an isolated fixed point. (ic. it is the only fixed point in its neighborhood) $\begin{bmatrix} \mathcal{I} & (\mathsf{x}^*, \mathsf{y}^*) & \mathsf{is} & a \end{bmatrix}$ local minimum of $\mathsf{E}(\mathsf{x}, \mathsf{y})$ Then: All trajectories sufficiently close to the fixed point $(x^*$, y^*) are closed. Let's apply the theorem on our double well example. $V(1)$ We know $E(x,y) = \frac{1}{2}y^2 - \frac{x^2}{2} + \frac{x^4}{4}$ is a conserved quantity $V(2)$ (x^+y^*) = (1,0) is an isolated fixed point in its neighborhood. $E(x,y) = \frac{1}{2}y^2 - \frac{x^2}{2} + \frac{x^4}{4}$ $(x^*,y^*)=(1,0)$ $\begin{array}{c|c}\n\hline\n0 & 0.5 & 1\n\end{array}$ My Clocal Elmand 00 Closed orbits exist around (1,0)
(Similar reasoning can be carried out)

